improvements

How Often to Assess Learners with CVI?

It has always been best practice in our field of visual impairment to assess children with any visual impairment at least yearly if they have a possibility of changing visual skills.

For kids with ocular impairments (degenerative conditions, damage to the eye or surgeries), sadly this change is usually a reduction in vision. You need the assessment to make sure the materials and methods match the current visual skills to ensure that learning has the optimal visual access.

For kids with CVI, the possibility of visual improvement changes warrant an assessment yearly so the materials and methods match the current visual skill. Waiting for the typical three year re-evaluations might miss a positive vision changes and materials and methods might not match the new visual skills.

Have You Really Controlled the Complexity and Light?

Complexity and access to distracting light and movement can completely overwhelm the student with CVI in the classroom. I have seen teachers work very hard to reduce the complexity of their classrooms. It can be a challenge but well worth every effort for our students with visual impairments due to CVI. Controlling complexity and light effectively creates accessibility to learning.

Take a look at this classroom: (Pinterest)

 

This teacher has covered the shelves that are probably filled with toys and books. The shades are pulled down to control distracting light sources. The floor cover is a nice non-complex background for looking at materials placed on the rug. A nice start!

BUT: look at the shelves in on the left side of the room. The black cover controls the complexity on the shelves but the complexity remains with the many colorful and complex materials stored on top. If those toys were removed, that left side of the room would be a much less complex background against which to learn.  That is, of course, if that is the way the student in facing in the room!

If the student is facing the right side of the room or learning in the middle of the room, that would be completely overwhelming and complex. If the student is facing this way and this is the background, the student would really struggle against this complexity of array. This side of the room is completely inaccessible for learning for the student with CVI.

Here is a challenge for everyone as you return to school from the holiday break. Pick a student in your class who has CVI. Think about every position you place that student throughout the day. Actually sit there. Is the background where the student is facing free of complexity? If not, rethink your adaptations so the whole room is adapted. Would there be a better place to face? Would learning against a wall rather than in the middle of the classroom be best? Accessible learning is from the student’s point of view not from ours.

Two Interconnected Expanded Core Curriculum Areas for Children with CVI

As a Teacher of Student with Visual Impairments, I am certainly focused on the improvement of visual skills for my students with CVI. I am also interested in how my students understand everything that is easily understood by their sighted peers due to their incidental learning. These intertwined Expanded Core Curriculum (ECC) areas must be considered for that equal access.

These two important areas of the Expanded Core Curriculum must be considered separately and together. These are:

  1. Sensory efficiency skills
  2. Compensatory Skills, Functional Academic Skills (Including Communication Modes)

Sensory Efficiency Skills: This area is especially important for the child with CVI but in a totally different way than that considered for a child with ocular impairments. We are expecting improvement for student with CVI. Functional visual assessment provides the baseline for functional visual skills and sets the stage for this improvement using strategies and objectives matched to the assessed needs.

Compensatory Skills, Functional Academic Skills: This area must be considered to support the building functional vision of the student with CVI. Vision is the distance sense that supports what is heard, smelled, felt and tasted.

Think about a classroom where someone drops something. The child with typical visual abilities can turn, look and determine what made the sound and determine that the sound is not a threat. The student with CVI hears the item drop and due to lack of visual location abilities or lack of distance abilities, does not turn, does not understand what made the sound and might remain in a state of stress wondering if this sound is a threat or not. We need to build this understanding of environmental sounds by labeling the sound, bringing the child closer to the sound, bringing the sound to them and allowing them to make the sound themselves for complete understanding. If someone drops a tray in the classroom, I make sure to bring a tray to the child and allow them to see it, feel it and push it off the tray to create the sound. Once understood, the sound will not create stress and allow the child to return to the learning. This approach provides the student with the same access to the visual, auditory, tactile, cognitive/language information enjoyed by their sighted peers.

For functional academics, focus needs to consistently be on ways to create and foster the highest level of independence possible to live and work in the future. These are skills that should be worked on from birth! Think of the value of organizational skills for a child with limited visual abilities. Getting objects from a storage place and returning the item to that store place when completed builds independence and understanding of the student’s environment.

For communication the CVI assessment can help us determine whether we provide tactile sign language to the student with deafblindness or just visually presented sign. If the child is only using peripheral vision, they could never see and understand the small, distinct visual-only sign that requires central vision use. If a communication device is used, the CVI assessment provides information about the accessibility of pictures, the ability to recognize pictures, the number of items that can be seen and recognized at one time (complexity of array), and what size is needed (due to complexity not acuity!). For literacy and communication, the CVI assessment provides information about the unique need for color highlighting, spacing and print size (due to complexity not acuity!)

All students with visual impairments need the ECC considered and provided in their educational programming. Students with CVI have the same educational needs but with consideration that CVI is completely different from ocular impairments.

Seeing Movement

Here is an interesting video about a woman with a brain injury. As she recovered some sight, she is first able to see rain since it was moving. She progresses to seeing other kinds of things moving in the world. Movement is so important for some children with CVI!

Blind Woman Who Saw Rain

https://www.youtube.com/watch?v=9ABQ-U6V0tY

 

Brain Plasticity

I just attended a meeting where the school psychologist stated “This child’s skills have plateaued”. Such old and erroneous information! Even with the scientific evident to the contrary, some professional continue to propagate this brain science myth. This is a dangerous myth. It sets a mindset that lowers a team’s expectations for a child’s continued learning across all skills.

In schools, there continues to be a misconception that brain plasticity is fixed to ages between 0 and 3 years old. While it seems true that the young brain learns and reassigns best, this does not mean that after age three, we do not have the expectation for improvements for all skills including visual skills. The brain has great plasticity all through life so we must expect improvements or we will most certainly not get them! We must continue to provide each child with the needed supports. Of course, these needs are determined after careful assessment using the correct tools that measures where and how the child is functioning. For a child with CVI, the correct assessment for functional vision is based on the well known visual behaviors of this brain based visual impairment.

Knowing where and how a child is functioning is the only way to provide first: optimal visual access and second: build visual skills. We move from current functioning, determine the next steps and create goals and objective for improvement.

Here are some resources that I shared with that psychologist, parents and the team:

Psychology Today: Brain Plasticity in Older Adults https://www.psychologytoday.com/blog/iage/201304/brain-plasticity-in-older-adults

Dr. Lofti Merabet Looking Inside the Adaptive Brain
https://videocast.nih.gov/summary.asp?Live=16959&bhcp=1

Inservice about Peripheral Vision

Many of my students with CVI use their peripheral vision for looking. I struggled to help staff and parents understand exactly what this means as far as visual accessibility of learning materials for the child. I devised an inservice for staff and parents that simulates what kids see when they use peripheral vision. Using this, staff and parents can really live that inaccessibility.

I place people into teams of two. One person on the team is “has” CVI with only peripheral vision use. I ask them to focus on a target in the room and not turn to look at any materials their partner will present.

The other team member shows their partner with CVI three kinds of learning materials in their peripheral field:

  • A 3D object
  • Pictures from a book
  • Communication icons
  • Words in large print

I ask the peripheral vision user to tell me what they can see during each presentation. It becomes so clear that using peripheral vision, the child can only see color and vague shape.

This inservice, yet again, gives me an opportunity to talk about the child’s assessed functional vision. I have the opportunity to again stress the possibility of improvement for children with CVI. Working with accessible learning materials with environmental adaptations matched to the child’s CVI assessment, will build visual skills towards that ventral stream use that we all want for the child but for now, these kinds of learning materials are inaccessible.

The inservice provides the experience of inaccessibility.

Youtube Lecture: Recovered Sight: Michael May

Understanding Blindness and the Brain (Brian Wandell, Stanford University)

I think you might find this one fascinating! Michael May lost vision as a child and regained it in his 40s. As he regains sight, there are so many CVI characteristics he experiences!

https://www.youtube.com/watch?v=VVgfC_FV2hI

Learning about the Brain

In college, learning to become a teacher of students with visual impairments, I learned all about the parts of the eye and how each part functions. I learned about various types of eye damage and what kinds of visual impairment that damage might cause. This helped explain the student’s functional vision to create the optimal environment for learning.
For CVI we need to do the same for the brain: understand the parts of the brain and to understand how each part of the brain functions (as currently understood by vision neuroscientist). Hopefully in the future, we can understand how that damage causes certain kinds of visual impairment.
For now, we assess child’s visual functioning by using assessment based on visual behaviors that we know are common for CVI. In the parent interview, other unique manifestations of CVI might be identified and need assessment. This helps me explain the student’s functional vision so the team and parents can create the optimal environment for learning and to measure visual improvements that are expected.

Reducing Support

In the last blog post, I talked about a strategy using a lightbox to support looking and reaching to access finger food for my student Julie. She was reaching without looking to eat and she was satisfied with that! Her self feeding is certainly functional but not helpful as we more to the future goal of utensil use. The higher level skill of utensil use requires looking to the food using central vision using a fork or spoon.

At first introduction using the lightbox backlighting and the clear plate with popcorn as the visual target, Julie had immediate access.  Her improved skills for looking and reaching with this environmental support of backlighting was fantastic.  My goal is always to provide access for current skills after assessment.

This can never the last step.

I am always thinking about improvements in Julie’s skills using less environmental support. As Julie improves her visual motor skills while finger feeding, I will use the brightness adjustment feature of the lightbox to reduce the backlighting gradually until the lightbox itself is no longer necessary for finger feeding.

We are not there yet, but I would expect when we introduce spoon or fork use, we might need to put the backlighting support back into place as Julie learns a more difficult skill, while she tolerates hand under hand tactile support and moves to greater independence.

Improved Visual Motor: Self Feeding

From our CVI assessment, we understand how important light is to Julie, age 10.

Julie enjoys eating and will finger feed completely without looking.  She finds the food using her tactile skills only.  It will be impossible to move to increase her eating skills using a fork or spoon if she is not looking at the visual target of the pieces of food.

When the lightbox is used with a clear plastic plate, Julie alerts, looks to the pieces of popcorn and sustains gaze while looking and reaching!  Her reach is direct, targeted and accurate to the popcorn. Just wonderful to see this immediately!

JA lightbox

(We ordered a large, clear plastic tablecloth that we can cut up to protect the lightbox).

Lightbox available free through American Printing House for the Blind if your child is registered as legally blind.  Ask your TVI to order it for you!